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An analytical approach to vibration control is presented, and verified experimentally, for
cases where it is undesirable to add actuators with significant mass and stiffness to the
structure. A linear coupling control (LCC) strategy is implemented by coupling a second
order linear system to an oscillatory plant to create an energy exchange between the two
component systems. One of the advantages of this approach is that the control strategy
is ultimately capable of controlling unforced and periodically forced vibrations in the plant.

The paper covers the application of the LCC control strategy to a cantilevered beam
actuated by piezoceramic actuators. A novel model for the piezoactuated beam is derived
for any representative mode, resulting in a set of linearized equations. Also, the model
provides flexibility in actuator location and dimensions.

The controller is modelled as a single-degree-of-freedom linear oscillator which is
coupled to the plant via linear terms. The result is a small actuating force, or weak coupling
between plant and controller which lends itself well to piezoceramic actuation. This system
is solved as a linear eigenvalue problem which provides a computationally efficient means
of finding the response.

The solution is also verified by means of a finite element (FE) simulation which is carried
out for both free and forced vibration. Apart from confirming the theoretical model and
closed-form solution, the FE method provides another flexible means in predicting the
response of the LCC strategy, the control strategy and the theoretical studies have been
verified experimentally.
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1. INTRODUCTION

The notion of using secondary coupled systems for vibration absorption is well established
both analytically and in practice [1, 2]. In many contemporary engineering works
traditional control methods cannot be used either because the required actuators are too
heavy for the application at hand or because the method itself cannot cope with the
circumstances of the application. Applications of this sort include space structures such
as satellites, or other structures that must be considered as flexible in an analysis of their
dynamic behaviour. In the case of a space structure there is typically very low inherent
damping in the structure so that there will most likely be significant residual oscillations
from slewing motions. In the case of robots the decreased stiffness results in a loss of
accuracy in terms of end effector positioning.
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This paper examines the control of structural vibration by means of an energy based
strategy that exploits the beat phenomenon. This is a phenomenon which may be observed
in two coupled linear systems that have frequencies tuned very close to each other. The
result is a fast oscillation in each system modulated by a slow envelope frequency. Control
is accomplished by coupling the plant and the controller in such a manner that an exchange
of energy between the two is achieved. A significant feature of this strategy is that the same
controller may also be used to quell forced excitation, in addition to free vibration.

The notion of using an energy based controller was originally exploited by Golnaraghi
[3]. This work established a non-linear coupling characteristic, defined as Internal
Resonance (IR), because a clamped–free flexible beam and a spring-mass-slider.
Subsequently, the slider mechanism was replaced by a motor with a rotating moment arm,
Khajepour et al. [4]. The equations for this system are dynamically coupled and contain
quadratic non-linearities, which were exploited for control purposes. The system was
realized experimentally later on and it was found that the first mode of the primary beam
could be controlled for a variety of initial conditions.

Tuer et al. [5, 6] have shown that linear co-ordinate coupling can be used as an energy
exchange technique and unlike the nonlinear coupling control of Golnaraghi [3], which
exploited modal interactions, the linear controller exploits coupling between co-ordinates.
It was shown that the maximum transfer of energy was obtained when the natural
frequencies of the plant and the controller were equal. Furthermore, the linearly coupled
system considered in these previous efforts, and in this paper are shown to be stable for
all practical purposes. The stability analysis using the eigenvalue problem model and the
Lyapunov method has fully been addressed in Khajepour et al. [4] for a general class of
linear coupled controllers, and hence, is not mentioned here.

Also, under certain system parameters all the plant energy could be extracted by the first
local minimum in the output signal. Similarly, works by Morris and Juang [7] and Juang
and Phan [8] use a linearly coupled system as a dissipative controller. The approach in
these works is similar in that a coupled linear system is employed. However, the
fundamental difference is that the LCC strategy relies on the beat phenomenon and
decoupling at a minimum, and not active/passive energy dissipation.

Oueini and Golnaraghi [9] was able to replace the secondary systems used by Golnaraghi
[3], Tuer et al. [5, 6] with an internal resonance that was built as a coupled oscillator
implemented in analog circuitry that emulates the equation of the controller.

The work presented in this paper continues from these previous works in coupling
control, by examining the possibility of controlling the free and forced (periodic forcing)
vibration of a beam using piezoceramic actuators. The approach of using piezoceramics
for control has been established by Crawley and Anderson [10], and furthered by others
such as Inman et al. [11]. However, in this work piezoceramics are incorporated as part
of the LCC strategy, which amounts to replacing a physical vibration absorber with an
electromechanical (piezoelectric and circuit) counterpart. The most notable distinction of
this controller from classical state feedback controllers is that the same coupling controller
is used to control both the free and the forced case.

The configuration for the present beam is a clamped–free flexible beam with the
vibration occurring in a plane that is parallel to the ground. This orientation was selected
so that the effects of gravity could be ignored in the modelling. The actuators are
piezoceramic elements rigidly bonded to a portion of the beam. Analytical models for an
actuator/beam system have been examined in the past by Patnaik et al. [12, 13]. This paper
incorporates the properties of the actuator into that of the substructure. Thus, modelling
for the system is carried out by partitioning the domain into actuated and non-actuated
regions and deriving the equations of motion for the whole by applying appropriate
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continuity conditions. The result is a model which may have ultimately been used for
placing piezoceramics anywhere along the length of the beam. Moreover, the model
provides the flexibility to analyze any number of modes of vibration, however for this work
multi-mode vibration control is left to further examination in subsequent work by
researchers in the same university research group. The beam equations are coupled with
a single-degree-of-freedom, linear, second order differential equation, which models a
linear oscillator physically coupled to the plant.

The plant and controller governing equations are considered analytically with the
intention of finding a closed form solution, and an approach to solving these equations
is detailed. The result is a computationally efficient solution for the response of the
beam/controller system.

The same system configuration is also analyzed with the finite element method, in order
to verify the developed model and provide another flexible means of solving the response.
The FE matrices are augmented to include the extra degree of freedom assigned to the
controller. Both the free vibration and forced vibration scenarios are simulated, and the
possibility of simulating different actuator configurations and dimensions is incorporated.
In order to validate the theoretical and finite element results an experiment has been
devised which is briefly described in this paper.

2. THEORETICAL FORMULATION OF SYSTEM

The development of the plant and controller models is illustrated for a cantilevered beam
with piezoceramic actuators and the LCC controller. The beam is assumed to be separated
into two regions; one region which has actuators attached to the beam and another region
consisting of only the beam. Under the assumptions of the Euler–Bernoulli beam model
expressions for the mode shapes and the frequency equation are derived. It must be noted
that the partitioning in two regions has been used here only for convenience. In general,
the actuators may be applied to an arbitrary location and a similar method may be used.
Thereafter, the controller is described and the method of coupling is explained. Various
expressions for describing the behaviour of the system are obtained from the plant and
controller coupled system.

2.1.    

A cantilevered beam with piezoceramic layers bonded to the substructure at the fixed
end of the beam will be considered as shown in Figure 1.

Consistent with the assumptions for an Euler–Bernoulli beam it is assumed that
axial loads and rotary inertia are negligible, and that plane sections remain plane
and normal. It is also assumed that each region behaves according to the Euler–

Figure 1. Cantilevered flexible beam model.
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Bernoulli model and hence may be described by the beam equations governing that model.
Hence,

E1 I1 yiv
1 + r1 A1 ÿ1 =0, 0E x1 EL1, E2 I2 yiv

2 + r2 A2 ÿ2 =0, L1 E x2 EL2, (1a, b)

where Ei Ii is the flexural rigidity of the ith region, ri Ai is the linear mass density of the
region, and i= {1, 2}. The transverse displacement over the region i denoted by yi (xi , t).
To solve these equations, assume that y is separable in space and time, such that

y1 (x1, t)=F1 (x1)Y1 (t), 0E x1 EL1, y2 (x2, t)=F2 (x2)Y2 (t), L1 E x2 EL2.

(2a, b)

These may be substituted into equations (1) to yield

E1 I1 Fiv
1 Y1 + r1 A1 F1 Y� 1 =0, 0E x1 EL1, (3a)

E2 I2 Fiv
2 Y2 + r2 A2 F2 Y� 2 =0, L1 E x2 EL2. (3b)

Dividing through by Fi and ri Ai Yi , setting ai =Ei Ii /(ri Ai ), and equating the result to
the separation constant v2 yields separate equations in time and space expressed in
symmetrical form by:

a1
Fiv

1

F1
=−

Y� 1

Y1
=v2, 0E x1 EL1 ; a2

Fiv
2

F2
=−

Y� 2

Y2
=v2, L1 E x2 EL2. (4b)

The spatial equations are readily shown to lead to an eigenvalue problem which may be
formulated as follows:

a1 Fiv
1 −v2F1 =0, 0E x1 EL1 ; a2 Fiv

2 −v2F2 =0, L1 E x2 EL2. (5a, b)

Equations (5) have a characteristic equation of the form

s4 − b4
i =0 (6)

so that the characteristic roots are s1,2 =2bi and s3,4 =2jbi where b4
i =v2ai and j=z−1.

Consequently, the general solutions to (5) are

F1 (x1)=A1 cos (b1 x1)+A2 sin (b1 x1)+A3 sinh (b1 x1)+A4 cosh (b1 x1),

0E x1 EL1, (7a)

F2 (x2)=B1 cos (b2 x2)+B2 sin (b2 x2)+B3 sinh (b2 x2)+B4 cosh (b2 x2),

0E x2 EL2. (7b)

Note here the assumption that there exists distinct eigenvalues bi for each segment;
however, each is a function of v, which is the natural frequency for the whole beam.
Boundary conditions for the clamped–free beam may be expressed as

F1 (0)=0, F'1 (0)=0, F02 (L2)=0, F12 (L2)=0. (8)

In addition it is required that there be continuity of displacement, rotation, moment, and
shear at the boundary between the two segments of the beam so that

F1 (L1)=F2 (0), F'1 (L1)=F'2 (0), F01 (L1)=F02 (0), F11 (L1)=F12 (0). (9)

Introducing the transformation x2 = x1 −L1 allows each portion of equations (7) to be
expressed in the same co-ordinate x1 (which will be henceforth referred to as x). Thus,
equations (7) may be written as

F1 (x)=A1 cos (b1 x)+A2 sin (b1 x)+A3 sinh (b1 x)+A4 cosh (b1 x), 0E xEL1,

(10a)
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F2 (x−L1)=B1 cos (b2 (x−L1))+B2 sin (b2 (x−L1))+B3 sinh (b2 (x−L1))

+B4 cosh (b2 (x−L1)), L1 E xEL2, (10b)

and the boundary conditions (8) must be re-expressed given the new reference frame, to
yield

F1 (0)=0, F'1 (0)=0, F02 (L1 +L2)=0, F12 (L1 +L2)=0, (11)

while the continuity conditions (9) must be re-expressed to yield

F1 (L1)=F2 (L1), F'1 (L1)=F'2 (L1), F01 (L1)=F02 (L1), F11 (L1)=F12 (L1).

(12)

Substituting general solutions (10) into the boundary conditions (11) and the continuity
conditions (12) results in a set of eight equations expressed in terms of the eight constants
A1, . . . , A4, B1, . . . , B4. These equations may be expressed in matrix form, where a column
vector contains the solution constants and the matrix contains transcendental expressions
which are constant coefficients [14]. The matrix, defined as E, is partitioned in order to
simplify the evaluation of mode shape constants, and appears as

E11 E12

(7×7) (7×1) A
 1

G
G

G

L

l

g
F

f
h
J

j
E=G

G

G

K

k
E21 E22 B4

=0 (13)

(1×7)

The element E22 is the coefficient of B4 for boundary condition (11d) and A
 1 represents the
vector of constants A1 to B3 without element B4. Consider

E11 A
 1 +E12 B4 = 0, (14)

which may be rewritten and inverted to yield

A
 1 = [−E−1
11 E12]{B4}. (15)

The constant terms A
 1 thus found are used in equation (10) to find the mode shapes for
the beam. Furthermore, for a non-trivial solution the determinant of matrix E must equal
zero, yielding a characteristic equation in bi . Recall that b4

i =v2ai , where v is the natural
frequency for the entire beam. The resulting characteristic equation is very long and
complicated [14].

Now the governing equations (1) may be solved by assuming a series solution of the
form:

y1 (x, t)= s
n

r=1

Fr1 (x)Y1 (t), 0E xEL1, (16a)

y2 (x, t)= s
n

r=1

Fr2 (x)Y2 (t), L1 E xEL2, (16b)

where the infinite series is truncated at n modes and x is the co-ordinate with origin at
the base of the beam and having the domain x$[0, L1 +L2]. Substituting equation (16) into
equations (1) and dropping the summation to consider only the rth mode results in

E1 I1 Fiv
r1Y1 + r1 A1 Fr1 Y� 1 =0, 0E xEL1, (17a)
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E2 I2 Fiv
r2Y2 + r2 A2 Fr2 Y� 2 =0, L1 E xEL2. (17b)

After taking the inner product of equation (17) with respect to Fs1 and Fs2, integrating by
parts twice, and making use of the boundary conditions (11) yields

E1 I1 ([Fs1 F1r1 −Fr1 F1s1 ]L1 − [F's1 F0r1 −F'r1 F0s1]L1)+ r1 A1 (v2
r −v2

s ) g
L1

0

Fr1 Fs1 dx=0

(18)
and

E2 I2 ([Fs2 F1r2 −Fr2 F1s2 ]L1 − [F's2 F0r2 −F'r2 F0s2]L1)+ r2 A2 (v2
r −v2

s ) g
L2

L1

Fr2 Fs2 dx=0.

(19)

Adding equations (18) and (19) and enforcing Betti’s Law [15], which in essence implies
that the first terms in each of equations (18) and (19) sum to zero, resulting in the inertial
orthogonality relation

r1 A1 g
L1

0

Fs1 Fr1 dx+ r2 A2 g
L2

L1

Fs2 Fr2 dx=0, s$ r. (20)

Similarly, the elastic orthogonality relation is given by

E1 I1 g
L1

0

F0s1 F0r1 dx+E2 I2 g
L2

L1

F0s2 F0r2 dx=0, s$ r. (21)

Introducing an external forcing term fi (x, t) into equation (1) and assuming the series
solutions (16) gives

E1 I1 s
n

r=1

Fiv
r1Yr1 + r1 A1 s

n

r=1

Fr1 Y� r1 = f1 (x, t), (22a)

E2 I2 s
n

r=1

Fiv
r2Yr2 + r2 A2 s

n

r=1

Fr2 Y� r2 = f2 (x, t). (22b)

Taking the inner product with respect to Fs1 and Fs2, upon applying the orthogonality
conditions, and integration by parts twice yields the final result:

E1 I1 g
L1

0

F0s1 F0s1 Y1 dx+ r1 A1 g
L1

0

Fs1 Fs1 Y� 1 dx=g
L1

0

Fs1 f1 (x, t) dx, (23a)

E2 I2 g
L2

L1

F0s2 F0s2 Y2 dx+ r2 A2 g
L2

L1

Fs2 Fs2 Y� 2 dx=g
L1

L1

Fs2 f2 (x, t) dx. (23b)

The forcing term may now be addressed. Under the assumption of perfect bonding,
actuators effectively produce a bending moment on the beam. In that case, the forcing
terms in equation (23) may be treated as point moments acting at the edges of the
piezoceramic elements which, here, are at the base of the beam and at the interface L1.
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Therefore, fi (x, t) is expressed as point moments, or doublets, acting at x=0 and x=L1.
This may be written as

g
L1

0

Fs1 f1 (x, t) dx=g
L1

0

Fs1 G(t) [d'(x)− d'(x−L1)] dx, (24)

where G(t) is the magnitude of the moment assumed to be applied at either end of the
piezoceramic region, (i.e., segment 1). An identity for the Dirac delta function states

g
a

0

f(x)d'(x− a) dx= f '(a). (25)

Therefore the right side of equation (23a) may be written as

g
L1

0

Fs1 f1 (x, t) dx=[F's1 (L1)−F's1 (0)]G(t). (26)

The effect of the piezoceramics is assumed to be only on equation (23a), thus the right
side of equation (23b) is set equal to zero. Since the beam is continuous at L1, the resulting
equation may be written in a combined form:

E1 I1 g
L1

0

F0s1 F0r1 Y1 dx+ r1 A1 g
L1

0

Fs1 Fr1 Y� 1 dx+E2 I2 g
L2

L1

F0s2 F0r2 Y2 dx

+ r2 A2 g
L2

L1

Fs2 Fr2 Y� 2 dx= g1 G(t), (27)

where g1 = [F's1 (L1)−F's1 (0)], g1 is a parametric gain term resulting from the modal
contribution of the point moments and will be implemented physically as the gain of the
electromechanical coupling coefficients, and G(t) is a general time varying function which
will ultimately be replaced by some control law. The next section deals with the
development of the controller which will be implemented on the plant’s governing
equations.

The general plant equation (27) may now be completed. The quantities in the integrals
may be solved exactly since the mode shapes Fsi and Fri are known, and may be factored
apart from the Yi terms which are functions of time alone, yielding the following constants:

K1 =E1 I1 g
L1

0

F0s1 F0r1 dx, M1 = r1 A1 g
L1

0

Fs1 Fr1 dx, (28a, b)

K2 =E2 I2 g
L2

L1

F0s2 F0r2 dx, M2 = r2 A2 g
L2

L1

Fs2 Fr2 dx (28c, d)

Furthermore, it is also observed that the separated temporal solution for Yi in equations
(4) will show that Y1 =Y2. Thus, the constant terms may be reduced further given that
K=K1 +K2 and M=M1 +M2. The final governing equation appears as

Y� +v2
pY= g1 G(t), (29)
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where v2
p =K/M. Using the dimensions and properties of an actual physical system

developed by Salemi [14], the value v2
p =27·4 rad/s is subsequently used.

3. CONTROLLER MODELLING

As stated previously, the aim of this research is to exploit the notion of energy exchange
between linearly coupled systems. Having established a model for the cantilever beam, the
primary system, the goal is to develop the equations of a coupled secondary system. Since
this system does not necessarily need to exist in the physical sense, there is no need to
consider material, dimensional, or other such properties. However, the system must behave
as a linear oscillator which may be forced by an external linear input, and it must yield
an output that may be coupled with the plant.

3.1.    

The plant equations that are derived in the previous section may be adapted to include
some form of control strategy via the input provided by the piezoceramic actuators. The
forcing term on the right side of equation (27) is evidently a function of some moment
with magnitude G(t); however, G(t) is still an arbitrary input as yet undefined. At this
point, any general control strategy could potentially be assigned to dictate the input to
the plant. For example, a state feedback control law could be assigned to the input such
that G(t) is proportional to a set of time dependent states as described by Salemi et al.
[16]. Or, given some reference point to be maintained in the plant, an error term could
be implemented in a PID controller yielding some G(t) input to the plant.

3.2.    

The primary requirement of the coupling control strategy demands that the secondary
system must be a linear oscillator. Such a system, in general, would be satisfied by a linear
second order ordinary differential equation of the form

U� +2zc vc U� +c2
cU= gG(y, ẏ, ÿ, t), (30)

where U(t) is a time dependent generalized controller co-ordinate, zc is the controller
damping ratio, vc is the controller’s natural frequency, and G(y, ẏ, ÿ, t) is a generalized
forcing input which is a function of a single, or linear combination of plant states ÿ, ẏ
or y and is proportional to parametric gain g.

Recall from equation (16) that the solution y(x, t) for the plant equation may be
separable in time and space. It is assumed that only the first mode of vibration is being
considered. Thus the outputs of the generalized plant co-ordinate have the form:

yi (x, t)=Fi (x)Yi (t), ẏi (x, t)=Fi (x)Y� i (t), ÿi (x, t)=Fi (x)Y� i (t). (31a–c)

For the purpose of this research G is considered to be a function of only one of these plant
states. In any of the states in equations (31), the function Fi (x) may be considered constant
as it is independent of time. Moreover, Fi (x) may also be considered as an expression for
sensor position along the length of the beam, where x is the given location of the sensor.
The location of the sensor will therefore be designated as Ls , and the amplitude of the
modal co-ordinate at Ls will therefore be Fi (Ls ). The right side of equation (30) may be
re-expressed as

gG(y, ẏ, ÿ, t)= gFi (Ls )G(Yi , Y� i , Y� i , t). (32)

The controller may now be expressed strictly in terms of the separated temporal plant
states, and the controller’s own frequency, damping and generalized co-ordinates:
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U� +2zc vc U� +v2
cU= g2 G(Yi , Y� i , Y� i , t), (33)

where g2 = gFi (Ls ).
The final consideration that must be given to the controller is defining the output states

which will force the plant. The input G(t) from equation (27) may now be designated by
some state of the controller co-ordinate, generally expressed as

g1 G(t)= g1 F(U, U� , U� , t), (34)

where U� , U� or U are any of the controller states: acceleration, velocity, and position
output. And g1 is a parametric gain representing the magnitude of the moment applied by
the piezoceramics.

The model derivation may now be completed in the next section by consolidating the
plant and controller formulation into a unified expression for the system’s governing
equations. The plant equation and the controller equation (33) may now be written to
complete the system governing equations:

Y� +v2
pY= g1 F(U, U� , U� , t), (35a)

U� +2zc vc U� +v2
cU= g2 G(Yi , Y� i , Y� i , t). (35b)

4. THEORETICAL SOLUTION

The dimensions and properties of the laboratory version are found in Table 1; this same
plant is investigated theoretically according to the following analysis.

The plant and controller equations are implemented with specifically determined
coupling states via attempting methods suggested in references [4] through [8] and then
implemented through an iterative technique of plant/controller state analysis:

F(U, U� , U� , t)=U� , G(Yi , Y� i , Y� i , t)=Y. (36a, b)

In other words, the plant is forced by controller velocity and the controller is forced by
plant position. The controller equations now appear as

Y� +v2
pY= g1 U� , U� +2zc vc U� +v2

cU= g2 Y. (37a, b)

The parameters used for this solution were obained from the model outlined in Salemi [14].

4.1.  

The following plots are obtained by applying a diagonalization technique, found in
Perko [17], to the system of equations (37), which may be written in the form Ax= ẋ, with
initial conditions x(0)= x0. An invertible matrix of eigenvectors P is found, which satisfies

P−1AP=diag $aj

bj

−bj

aj %, (38)

T 1

Beam material and dimensional properties

Density Young’s Modulus Length Width Thickness
Property Material (kg/m3) (Gpa) (mm) (mm) (mm)

Value Al T-6061 2710 70 457·2 25·4 0·8
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and the solution for x(t) may be written as

x(t)=P diag eajt $cos (bj )t
sin (bj )t

−sin (bj )t
cos (bj )t %P−1x0. (39)

The following plots consist of the time response for Y, the plant position for both
controlled and uncontrolled cases, and U� , the controller velocity i.e., output. The
parameters used for this solution were obtained from the model outlined in Salemi [14].
Parameters that are varied in the following analysis are controller damping, frequency, and
initial conditions. The coupling gains are set as g1 =53·3 and g2 =11·2 [14].

4.2.  

The uncontrolled free vibration response of the plant is shown in Figure 2 and clearly
illustrates the minimal inherent damping in the system.

4.2.  

The process of tuning the controller involves the manipulation of controller frequency,
damping, and initial condition. The plant is observed while varying controller frequency;
recall the plant natural frequency is vp =27·4 rad/s. Tuning the controller frequency near
that of the plant results in a beating phenomenon; vc =23 rad/s is selected as yielding a
discernible beat. Controller damping is manipulated in order to improve the plant response
in achieving a better first minimum; a damping factor of zc =0·09 is applied. Manipulation
of the controller initial velocity U� (0) is used to change the initial kinetic energy of the
system. The controller initial position, U(0), is set equal to zero. The controller initial
condition applied is U� (0)=0·03. From the response shown in Figure 3 it is clear that the
coupled system demonstrates beating between the plant and controller. Also, it is seen that
the response characteristics may be manipulated by changing controller conditions. Lastly,
since the problem is linear it may be shown that the response may be solved for the time
to first minimum, and subsequently this decay time may used for control.

4.4.   

Finally, to implement a controller disable in the solution an ODE numerical solver is
used in MATLAB for simulation of td , the disable time. Note that the plant minimum

Figure 2. Uncontrolled response for free vibration: (a) plant response, (b) controller response.
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Figure 3. Plant and controller response from closed-form solution with vc =23 rad/s, zc =0·09, U� (0)=0·03:
(a) plant response, (b) controller response.

in the previous case occurred after approximately 1 s, when solved numerically the
controller is decoupled at 1·12 s, and thus the controller energy is not returned to the plant;
see Figure 4.

The disable time for the controller is problem dependent only quantitatively. However,
qualitatively, using the pseudo energy function,

E= ẋ2/2+V2x2/2, (40)

where V is independently defined and hence may be used to trigger the disable time at an
energy minimum, an examination of implementing this strategy is given in reference [4].

A finite element (FE) approach is selected to augment the closed form method that has
been already outlined. Furthermore, the FE analysis better lends itself to the simulation
of disabling the controller input at a plant minimum and the simulation of controlling
external forcing.

5. FINITE ELEMENT

In order to extend the developed theoretical model to a more flexible simulation
environment the governing equations establishd in the previous section are simulated by
means of finite element analysis of the cantilever beam illustrated in Figure 1. This will
allow the system to be analyzed for the disable–controller method and control of forced
vibration, as discussed in the introduction. Modelling for the actuator forces may be

Figure 4. Plant and controller response from closed-form solution with vc =23 rad/s, zc =0·09, U� (0)=0·03,
td =1·12 s: (a) plant response, (b) controller response.
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Figure 5. FE response vc =23 rad/s, zc =0·09, U� (0)=3: (a) plant response, (b) controller response.

referred to in Patnaik [13] and the FE analysis may be referred to in Salemi [14]. The
simulations are for a cantilever beam identical to that used in an experimental study to
be described later in this paper. The final system of equations now appears in state space
as follows:

01 0
0 110Y�U� 1+000 −g1

2zc vc10Y�U� 1+0 v2
p

−g2

0
v2

c10YU1=0F sin (vdr t)
0 1, (41)

where an addition of an external steady state harmonic excitation of the form F sin (vdr t)
is included. For the case of free vibration F is set equal to zero.

Therefore, what remains is the selection of controller frequency vc , controller damping
zc , controller initial condition U� (0), and controller disable time td . The coupling gains are
set consistently with those in the theoretical formulation. The following subsections present
results for the free and forced simulations.

5.1.    

As in section 4 the parameter analysis for the control of free vibration examines the
variation of parameters in the order mentioned above: vc , zc , U� (0), and td . Using the
parameter settings vc =23 rad/s, zc =0·09, and U� (0)=3 the notion of a beat phenomenon
between the plant and controller is reproduced in a FE simulation as shown in Figure 5.
The controller initial condition U� (0) has been re-scaled in the FE analysis by a factor of
×100 [16].

5.1.1. Controller disable time
The disable time is introduced to the FE simulations by observing that severing the

controller coupling leaves the plant with a specific position and velocity, or total energy.
With the link to the controller removed, the energy in the plant is dissipated through
internal damping. Of course the goal of this control strategy is to initiate the
plant/controller decoupling at the optimal time: when it leaves a minimum energy level
in the plant. This principle is illustrated in the simulations in Figure 6.

Note that if the controller is decoupled at any time prior or after the optimal disable
time, the plant is left with remnant oscillations due to left over energy. However, the result
for td =1·12 s, is timed perfectly such that remnant oscillations are virtually eliminated.
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Figure 6. Plant and controller response from FE analysis with vc =23 rad/s, zc =0·09, U� (0)=3, td =1·12 s:
(a) plant response, (b) controller response.

5.2.      

By manipulating the parameters of the controller in either method it is possible to affect
the response of the plant. Each method indicates that a controller frequency that is tuned
near the plant frequency will result in a beat phenomenon. Furthermore, each method
shows that an energy minimum in the plant may be created such that the controller has
extracted the plant vibration.

Also, the envelopes of the responses in the FE case show that the theoretical approach
has a consistent result. This is valuable in preparation for experimental work, in that either
model may be used to predict a laboratory methodology that could be used.

In summary, the process that is outlined and simulated using theoretical methods and
finite elements yields clear evidence of the effectiveness of this strategy. The concept of
vibration absorption as an active control method will be complete in the next section for
control of forced vibration.

5.3.    

Although well known in its passive form, vibration absorption is enhanced by means
of the LCC strategy which essentially amounts to an active vibration absorber. The
advantage here lies in the flexibility of the application, which allows for variation in
coupling and other parameters. The control of forced vibration involves significantly less
parameter manipulation than in free vibration control. The controller frequency is chosen
to be the same as in free vibration control because it affords the best energy exchange
between co-ordinates, while maintaining stability. Furthermore, since forced control
involves a steady-state output of the controller co-ordinate, the values of initial conditions
U� (0) and disable time td are inconsequential. Hence what remains to be analyzed is the
effect of controller damping on the plant response.

The forced input to the plant is modelled as a support excitation input y=F cos (vdr t)
for which the system has a general governing equation of the form

ẍ+2zp vp (ẋ− ẏ)+v2
p(x− y)=0, (42)

where vdr is the driving frequency of the excitation. The final form of this equation which
is implemented in MATLAB code found in Salemi [16] is

ẍ+2zp vp ẋ+v2
px=v2

pF cos (vdr t)−2zp vp Fvdr sin (vdr t). (43)
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Figure 7. Forced vibration response from FE analysis zc =0·09: (a) plant response, (b) controller response.

The method applied to activating the controller involves simulating the uncontrolled
response until transients have dissipated, and then turning on the controller by introducing
the coupling terms, and continuing the simulation from the final states of the uncontrolled
response.

5.3.1. Controller damping
The controller damping is implemented for a single case, and is illustrated in Figure 7

for zc =0·09. The simulation shows the controller activated at one quarter of the total
simulation time. Percentage improvement over the uncontrolled response is calculated.
This is defined as one minus the ratio of the controlled amplitude to the uncontrolled
amplitude. This response is drastically improved by the control activation, the percentage
improvement is 83·6%. This is more evident by comparing the FFT of the uncontrolled
forced vibration versus the controlled forced vibration response shown in Figure 8.

6. EXPERIMENTS

In order to validate the theoretical and finite element results an experiment was devised,
which is summarized as follows. The plant upon which the controller is implemented
consists of a cantilevered beam such that the oscillations are planar. The base is clamped
to a massive aluminum test bed such that the plant is sufficiently isolated from any
extraneous vibration. The beam is made of aluminum sheet metal with material and
dimensional properties as given in Table 1.

The actuators consist of two banks of four thin piezoceramic elements rigidly bonded
to each side of the beam at the clamped end as shown in Figure 1. The length of the beam

Figure 8. FFT for forced vibration: (a) uncontrolled response, (b) controlled response.
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T 2

Actuator material and dimensional properties

Young’s Charge
Density Modulus Constant d31 Length Width Thickness

Property Material (kg/m2) (Gpa) (C/m) (mm) (mm) (mm)

Value BM-532 7350 71·4 −200×10−12 76·2 25·4 0·6

covered by the piezoceramic actuator is 75 mm. The actuator material is a PZT ceramic
model BM532 produced by BM Hi-Tech Ltd. The actuator material properties and
dimensions for a single element are given in Table 2. The elements are bonded with a BM
Hi-Tech proprietary epoxy, and are arranged such that the dielectric poles of all elements
are pointing in the same direction. When soldered, the positive lead is joined to all sides
facing outward from the beam. The negative lead is bonded to the substructure, because
the epoxy is sufficiently conductive to permit current to flow to the undersides of the
elements facing the substructure. Hence, the same alternating signal can drive both banks
of actuators at 180° out of phase. The deflection of the beam is measured using a strain
gauge (Measurement Group Gauge, type EA-B-125TQ350) bonded as shown in Figure 1.

Strain gauges placed at the base of the beam provide a signal proportional to deflection,
which is pre-amplified by a custom made circuit, and filtered by a commercial filter
(Krohn-Hite 3322) set for low pass. The beam output is displayed on a Nicolet 310 digital
oscilloscope. The conditioned signal is differentiated twice on a custom made board such
that all plant states, position, velocity, and acceleration are known and may be used for
controller coupling. The signal is fed to the controller and a feedback output is generated
from the analog circuitry. The output of the controller is conditioned for amplification by
a high voltage power supply (HVPS), and subsequently excites the piezoceramics.

For free vibration control, the beam is clamped such that a release mechanism can create
different repeatable initial conditions. For forced vibration, the configuration shown in
Figure 9 is mounted on a custom built harmonic oscillator.

The results for both the control of free and forced vibrations, shown in Figures 10 and
11, correspond well with the theoretical results.

The delay time constant td is set by means of varying a potentiometer resistance.
Selection of td is made by means of previous test observations, whereby, upon noticing
the minimum time on the previous plots it is possible to converge to the time by trial and

Figure 9. Schematic diagram of experimental apparatus.
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Figure 10. Experimental controlled free response; vc =24 rad/s, zc =0·13, ICc =4·5; (a) td =0·74,
(b) controller, (c) td =1·31, (d) controller, (e) td =0·91, (f) controller.

error. Figures 10(a), 10(c), and 10(e) show the responses for td =0·74, td =1·31 and
td =0·91. Figures 10(b), 10(d), and 10(f) show the respective controller responses. The
results in Figure 10 show that the delay is critical to the response. A disable time that is

Figure 11. Experimental controlled response forced: vc =24 rad/s, zc =0·09; (a) plant response,
(b) uncontrolled FFT, (c) controlled FFT.
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too early, td =0·74, does not take advantage of the minimum yet to occur, as seen in
Figure 10(a). However, if the disable is activated too late, td =1·31, as in Figure 10(c),
then the remaining energy in the plant dissipates without the benefit of the control action.
Finally, the optimum response td =0·91 is achieved when the disable is timed for exactly
the first minimum.

For forced vibration, controller frequency vc is left at the optimal value of vc =24 rad/s.
Since the controller is a continuous active vibration absorber, the initial condition of the
controller is inconsequential to the over all response, hence it is set to zero. Moreover, the
disable time is also insignificant as the controller is never disabled. Therefore, the only
variable to have any significance to the plant response is the controller damping zc . The
method applied to activating the controller involves simulating the uncontrolled response
until transients have dissipated, and then turning on the controller by introducing the
coupling terms, and continuing the simulation from the final states of the uncontrolled
response.

The beam is excited by a harmonic shaker as described earlier. The excitation frequency
for this experiment is always the first natural frequency of the beam, 4·2 Hz. The beam
transients are allowed to dissipate and the controller is only turned on when steady state
is established. The plant responses each show the initial uncontrolled response, control
activation, and controlled steady-state. The results for each case include FFT traces for
the uncontrolled and controlled portions.

In Figure 11 the damping ratio is set to zc =0·09. It is observed that minimal phase
shift occurs in the response; however, the amplitude decrease is reflected in the FFT.
The controlled response is significantly improved over the uncontrolled case, and it
is demonstrated by the breadth of the trace in the controlled FFT that the response is
further improved. By measuring the magnitudes of the controlled and uncontrolled forced
responses, there is an improved performance of over 80% over the uncontrolled response.
For a detailed examination of the experimental system see reference [16].

7. CONCLUSIONS

This work employs the notion of using a secondary coupled co-ordinate for vibration
absorption in an active control sense, which provides a significantly flexible enhancement
to the classical passive vibration absorber, in that the same controller is used for free and
forced vibration control. To this end, a linearized model is developed for a flexible
cantilever beam with piezoceramic actuators. Upon coupling with the controller equations,
this method results in a two-degree-of-freedom plant/controller set of governing equations
which are solved. One advantage of this model is shown in that it is solved via analytical
means resulting in a closed form solution, resulting in a computationally efficient method
of analysis.

The responses examine a particular set of coupling terms which are determined
experimentally, and yield the optimum energy exchange between co-ordinates. The LCC
controller is simulated for a variety of conditions, by manipulating controller frequency,
damping, initial condition and disable time.

In order to verify the model and analytical solution, a set of finite element simulations
are also shown for the same physical parameters as the analytical model. The simulations
are carried out for two inputs to the plant. The first case is for free vibration control, where
an initial condition is imparted to the plant and the controller dissipates the oscillations.
The second case is for forced vibration control, where a steady-state, harmonic, support
excitation is simulated, and the controller operates continuously to dissipate energy. The
results of the simulations confirm the efficacy of the controller strategy. For free vibration,
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it is possible to tune a set of controller conditions such that the energy minimum in the
plant can be achieved. Furthermore, the controller may be disabled in order to prevent
energy from returning to the plant. When timed properly the controller reduced plant
oscillations to zero. This occurred in a fraction of the time for a free response. For forced
oscillations, the controller damping is manipulated in order to improve overall response.
Experimental analysis demonstrated qualitative verification of the theoretical and finite
element analysis solutions.
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